Оксид цинка

Рейтинг:   / 5
ПлохоОтлично 
Просмотров: 13926

Белила цинковые

Оксид цинка.

 

Химическая формула продукта: ZnO

Торговые обозначения продукта:

Описание продукта:

Оксид цинка представляет собой неорганическое соединение с формулой ZnO. Оксид цинка представляет собой белый порошок, который нерастворим в воде и широко используется в качестве добавки во многих материалах и изделиях, включая каучуки, пластмассы, керамику, стекло, цемент, смазки, краски, мази, клеи, герметики, пигменты, продукты питания, аккумуляторы, ферриты, антипирены и скотч-пленки. Хотя это происходит естественным образом как минеральный цинцит, большая часть оксида цинка получается синтетически. Белила цинковые является широкозонным полупроводником полупроводниковой группы II-VI. Природное легирование полупроводника из-за кислородных вакансий или междоузлий цинка n-типа. Этот полупроводник обладает рядом благоприятных свойств, включая хорошую прозрачность, высокую подвижность электронов, широкую запрещенную зону и сильную люминесценцию при комнатной температуре. Эти свойства ценны в новых применениях для: прозрачных электродов в жидкокристаллических дисплеях, энергосберегающих или теплозащитных окнах, а электроника - в виде тонкопленочных транзисторов и светоизлучающих диодов. Оксид цинка (также называемый белым цинком) представляет собой аморфный белый или желтоватый порошок, нерастворимый в воде и спирте, но растворимый в кислоте и щелочи. Частицы оксида цинка могут быть сферическими, игольчатыми или шаровидными в зависимости от производственного процесса. Форма частиц важна для максимизации физических свойств. Оксид цинка поглощает практически все ультрафиолетовое излучение на длинах волн ниже 360 нм и обеспечивает превосходную защиту связующих. Оксид цинка реагирует с кислотными компонентами покрытий и образует цинковые мыла. Цинковые мыла улучшают гибкость и твердость покрытий. Он используется в качестве пигмента в рецептуре резины, в качестве белого пигмента в керамической промышленности, в качестве непрозрачной основы в косметике, и имеет другие применения в бумаге, красках и отраслях оптического стекла.

Оксид цинка кристаллизуется в двух основных формах: гексагональном вюрците и кубической оцинкованной обманке. Структура вюрцита наиболее стабильна при окружающих условиях и, следовательно, наиболее распространена. Форма цинковой обманки может быть стабилизирована путем выращивания оксида цинка на подложках с кубической структурой решетки. В обоих случаях центры цинка и оксида являются тетраэдрическими, наиболее характерной геометрией для Zn (II). Оксид цинка превращается при относительно высоких давлениях, около 10 ГПа. Гексагональные и оцинкованные полиморфы не имеют инверсионной симметрии (отражение кристалла относительно любой данной точки не превращает ее в себя). Это и другие свойства симметрии решетки приводят к пьезоэлектричеству гексагональной и оцинкованных белил цинковых и пироэлектричеству гексагонального оксида цинка. Как и в большинстве материалов группы II-VI, связывание атомарных структур в оксиде цинка является в значительной степени ионным (Zn2+ -O2- ) с соответствующими радиусами 0,074 нм для Zn2+ и 0,140 нм для O2- . Это свойство объясняет преимущественное образование структуры вюрцита, а не цинковой обманки, а также сильное пьезоэлектричество оксида цинка. Из-за полярных связей Zn-O, цинк и кислородные плоскости электрически заряжены. Для поддержания электронейтральности эти плоскости восстанавливаются на атомном уровне в большинстве относительных материалов, но не в оксиде цинка - его поверхности являются атомарно плоскими, стабильными и не имеют реконструкции. Эта аномалия оксида цинка полностью не объяснена.

Оксид цинка - относительно мягкий материал с приблизительной твердостью 4,5 по шкале Мооса. Его упругие постоянные меньше, чем у соответствующих полупроводников III-V, таких как GaN . Высокая теплоемкость и теплопроводность, низкое тепловое расширение и высокая температура плавления оксида цинка выгодны для керамики. Из тетраэдрически связанных полупроводников было заявлено, что оксид цинка имеет самый высокий пьезоэлектрический тензор или, по крайней мере, сравнимый с GaN и AlN. Это свойство делает его технологически важным материалом для многих пьезоэлектрических применений, для которых требуется большое электромеханическое соединение. Оксид цинка имеет относительно большую прямую запрещенную щель ~ 3.3 эВ при комнатной температуре. Преимущества, связанные с большим зазором диапазона, включают в себя более высокие напряжения пробоя, способность выдерживать большие электрические поля, более низкий электронный шум и работу при высоких температурах и высокой мощности. Зазор оксида цинка может быть дополнительно настроен на ~ 3-4 эВ путем его легирования оксидом магния или оксидом кадмия. Большинство оксида цинка имеет n -типный характер, даже при отсутствии преднамеренного легирования. Нестехиометрия, как правило, является источником характера n-типа, но субъект остается спорным. Было предложено альтернативное объяснение, основанное на теоретических расчетах, что причиной являются непреднамеренные замещающие водородные примеси. Управляемое легирование n-типа легко достигается заменой Zn элементами группы III, такими как Al, Ga, In, или заменой кислорода элементами VII группы хлором или иодом.

В производстве оксида цинка выделяют три основных метода.

  1. Косвенный метод. В непрямом или французском процессе металлический цинк плавится в графитовом тигле и испаряется при температурах выше 907 ° С (обычно около 1000 ° С). Пары цинка реагируют с кислородом в воздухе, что приводит к образованию ZnO, сопровождаемому падением его температуры и яркой люминесценции. Частицы оксида цинка транспортируются в охлаждающий канал и собираются в мешочек. Этот косвенный метод был популяризирован LeClaire (Франция) в 1844 году и поэтому широко известен как французский процесс. Его продукт обычно состоит из агломерированных частиц оксида цинка со средним размером от 0,1 до нескольких микрометров. По весу большая часть оксида цинка в мире производится по французскому методу.
  2. Прямой процесс. Прямой или американский процесс начинается с разнообразных контаминированных цинковых композитов, таких как цинковые руды или побочные продукты плавильной печи. Прекурсоры цинка восстанавливаются (карботермическое восстановление) путем нагревания с источником углерода, такого как антрацит, с получением паров цинка, который затем окисляется, как в случае косвенного процесса. Из-за меньшей чистоты исходного материала, конечный продукт также имеет более низкое качество в прямом процессе по сравнению с косвенным.
  3. Мокрый химический процесс. Небольшое количество промышленного производства связано с влажными химическими процессами, которые начинаются с водных растворов солей цинка, из которых осаждается карбонат цинка или гидроксид цинка. Твердый осадок затем прокаливают при температурах около 800 ° С.

Существуют многочисленные специализированные методы для получения оксида цинка для научных исследований и применения в нишевых областях. Эти методы можно классифицировать по полученной форме ZnO (объемная, тонкая пленка, нанопроволока), температура («низкая», близкая к комнатной температуре или «высокой», т.е. T ~ 1000 ° C), тип процесса (осаждение из паровой фазы или рост из раствора) и другие параметры. Крупные монокристаллы (многие кубические сантиметры) могут быть выращены в результате переноса газа (парофазное осаждение), гидротермального синтеза или роста расплава. Однако из-за высокого давления паров оксида цинка рост из расплава является проблематичным. Трудно контролировать рост транспорта газа, оставляя предпочтение гидротермальному методу. Тонкие пленки могут быть получены химическим осаждением из паровой фазы, эпитаксией из паровой фазы с металлической структурой, электроосаждением, импульсным лазерным осаждением, распылением, золь-гель- синтезом, нанесением атомного слоя, пиролизом распылением и т.д. Обычная белая порошковая окись цинка может быть получена в лаборатории путем электролиза раствора бикарбоната натрия с цинковым анодом. Производятся гидроксид цинка и водород. Гидроксид цинка при нагревании разлагается до оксида цинка. Наноструктуры оксида цинка могут быть синтезированы в различные морфологии, в том числе нанопроволоки, наностержни, тетраподы, нанообъекты, нановолокна, наночастицы и т.д. Наноструктуры могут быть получены с помощью большинства вышеупомянутых методов при определенных условиях, а также с использованием метода «пар-жидкость-твердое тело». Синтез обычно проводят при температурах около 90 ° С в эквимолярном водном растворе нитрата цинка и гексамина, причем последний обеспечивает основную среду. Некоторые добавки, такие как полиэтиленгликоль или полиэтиленимин, могут улучшить соотношение размеров нанонитей оксида цинка. Допирование нанопроволок оксида цинка было достигнуто добавлением других нитратов металлов к раствору для выращивания. Морфология полученных наноструктур может быть настроена путем изменения параметров, относящихся к составу предшественников (таких как концентрация цинка и рН) или к термической обработке (такой как температура и скорость нагрева).

Физико-химические свойства Оксид цинка.

показатели

значение

1

Физическое состояние и внешний вид оксид цинка

Твердый (Порошковое твердое вещество)

2

Запах оксид цинка

Без запаха

3

Вкус оксид цинка

Горький

4

Молекулярный вес оксид цинка

81,38 г / моль

5

Цвет оксид цинка

от белого до желтовато-белого

6

Температура плавления оксид цинка

1975 ° C (3587 ° F)

7

Удельный вес оксид цинка

5,607 (вода = 1)

8

Дисперсионные свойства оксид цинка

Не диспергируется в холодной воде, горячей воде.

9

Растворимость оксид цинка

Не растворяется в холодной воде, горячей воде. Растворим в разбавленной уксусной кислоте или минеральных кислотах, аммиаке, карбонате аммония, фиксированной щелочи.

10

Стабильность оксид цинка

стабилен

 

Хранение и транспортировка оксид цинка:

Меры предосторожности:

Хранить в закрытом состоянии. Не глотать. Не вдыхать пыль. Носить соответствующую защитную одежду. В случае недостаточной вентиляции, наденьте подходящее респираторное оборудование. При проглатывании немедленно обратитесь к врачу и покажите контейнер или этикетку. Беречь от несовместимых веществ, таких как кислоты.

Хранение: Держать контейнер плотно закрытым. Хранить контейнер в прохладном, хорошо проветриваемом помещении. Не храните при температуре выше 25 ° C (77 ° F).

Области применения оксид цинка:

  1. Применения порошка оксида цинка многочисленны, а основные из них приведены ниже. Большинство применений используют реакционную способность оксида в качестве предшественника к другим соединениям цинка. Для применений в материаловедении оксид цинка обладает высоким показателем преломления, высокой теплопроводностью, связующими, антибактериальными и УФ-защитными свойствами. Следовательно, его добавляют в материалы и изделия, в том числе пластмассы, керамику, стекло, цемент, каучук, смазки, краски, мази, клеи, герметики, бетонное производство, пигменты, пищевые продукты, батареи, ферриты.
  2. Производство резины. В резиновой промышленности используется от 50% до 60% оксида цинка. Оксид цинка вместе со стеариновой кислотой используют для вулканизации каучука Добавка оксида цинка также защищает каучук от грибков и ультрафиолетового излучения.
  3. Керамическая промышленность. Керамическая промышленность потребляет значительное количество оксида цинка, в частности, в керамической глазури и фритт-композициях. Относительно высокая теплоемкость, теплопроводность и высокая температурная стабильность оксида цинка в сочетании со сравнительно низким коэффициентом расширения являются желательными свойствами в производстве керамики. Оксид цинка влияет на температуру плавления и оптические свойства глазурей, эмалей и керамических составов. Оксид цинка в виде низкого расширения, вторичный поток улучшает эластичность глазурей, уменьшая изменение вязкости в зависимости от температуры и предотвращая появление трещин.
  4. Медицина. Оксид цинка широко используется для лечения различных заболеваний кожи, включая дерматит, зуд из-за экземы, подгузников и прыщей. Он используется в таких продуктах, как детская пудра и барьерные кремы для лечения подгузников, кремов от каламина, шампуней против перхоти и антисептических мазей. Оксид цинка можно использовать в мазях, кремах и лосьонах для защиты от солнечных ожогов и других повреждений кожи, вызванных ультрафиолетовым светом. Многие солнцезащитные кремы используют наночастицы оксида цинка (наряду с наночастицами диоксида титана), потому что такие мелкие частицы не рассеивают свет и поэтому не кажутся белыми. Наночастицы оксида цинка могут усиливать антибактериальную активность ципрофлоксацина.
  5. Табачная индустрия. Оксид цинка является составной частью сигаретных фильтров. Фильтр, состоящий из угля, пропитанного оксидом цинка и оксидом железа, удаляет из табачного дыма значительные количества цианистого водорода  и сероводорода, не влияя на его аромат.
  6. Пищевая добавка. Окись цинка добавляется ко многим пищевым продуктам, включая зерновые завтраки, в качестве источника цинка, необходимое питательное вещество.  Сульфат цинка также используется для той же цели.
  7. Производство пигментов. Оксид цинка белый используется в качестве пигмента в красках и является более непрозрачным, чем литопон, но менее непрозрачным, чем диоксид титана Он также используется в покрытиях для бумаги. Китайский белый - это особый сорт цинкового белого, который используется в пигментах художников. Использование цинка белого цвета (оксид цинка) в качестве пигмента в масляной живописи началось в середине 18 века. Он частично заменил ядовитый белый свинец и был использован художниками, такими как Беклин, Ван Гог, Мане, Мунк. Это также основной ингредиент минерального макияжа.
  8. Покрытия. Краски, содержащие порошок оксида цинка, уже давно используются в качестве антикоррозионных покрытий для металлов. Они особенно эффективны для оцинкованного железа. Железо трудно защитить, потому что его реакционная способность с органическими покрытиями приводит к хрупкости и отсутствию адгезии. Краски на основе оксида цинка сохраняют свою гибкость и адгезию на таких поверхностях в течение многих лет. Пластмассы, такие как полиэтиленнафталат (PEN), могут быть защищены нанесением покрытия из оксида цинка. Покрытие уменьшает диффузию кислорода с помощью PEN. Слои оксида цинка могут также использоваться на поликарбонате (ПК) в наружных применениях. Покрытие защищает ПК от солнечной радиации и снижает скорость окисления и фото-пожелтение ПК.
  9. Предотвращение коррозии в ядерных реакторах. Оксид цинка, обедненный в 64Zn (изотоп цинка с атомной массой 64), используется для предотвращения коррозии в ядерных реакторах с водой под давлением. Истощение необходимо, поскольку 64Zn превращается в радиоактивный 65Zn при облучении нейтронами реактора.
  10. Реформа метана. Оксид цинка используют в качестве стадии предварительной обработки для удаления сероводорода из природного газа после гидрирования любых соединений серы до установки риформинга метана , которая может отравлять катализатор .